Multi-Label Graph Convolutional Network Representation Learning

نویسندگان

چکیده

Knowledge representation of networked systems is fundamental in many disciplines. To date, existing methods for learning primarily focus on networks with simplex labels, yet real-world objects (nodes) are inherently complex nature and often contain rich semantics or labels. For example, a user may belong to diverse interest groups social network, resulting multi-label applications. A network not only has multiple labels each node, the highly correlated making ineffective even fail handle such correlation node learning. In this article, we propose novel graph convolutional (MuLGCN) representation. fully explore label-label topology structures, model as two Siamese GCNs: node-node-label label-label-node graph. The GCNs one aspect nodes respectively, seamlessly integrated objective function. learned label representations can effectively preserve intra-label interaction properties, aggregated enhance under unified training framework. Experiments comparisons classification validate effectiveness our proposed approach.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Label Learning on Tensor Product Graph

A large family of graph-based semi-supervised algorithms have been developed intuitively and pragmatically for the multi-label learning problem. These methods, however, only implicitly exploited the label correlation, as either part of graph weight or an additional constraint, to improve overall classification performance. Despite their seemingly quite different formulations, we show that all e...

متن کامل

Learning Graph While Training: An Evolving Graph Convolutional Neural Network

Convolution Neural Networks on Graphs are important generalization and extension of classical CNNs. While previous works generally assumed that the graph structures of samples are regular with unified dimensions, in many applications, they are highly diverse or even not well defined. Under some circumstances, e.g. chemical molecular data, clustering or coarsening for simplifying the graphs is h...

متن کامل

Graph Based Convolutional Neural Network

In this paper we present a method for the application of Convolutional Neural Network (CNN) operators for use in domains which exhibit irregular spatial geometry by use of the spectral domain of a graph Laplacian, Figure 1. This allows learning of localized features in irregular domains by defining neighborhood relationships as edge weights between vertices in graph G. By formulating the domain...

متن کامل

Tensor graph convolutional neural network

In this paper, we propose a novel tensor graph convolutional neural network (TGCNN) to conduct convolution on factorizable graphs, for which here two types of problems are focused, one is sequential dynamic graphs and the other is cross-attribute graphs. Especially, we propose a graph preserving layer to memorize salient nodes of those factorized subgraphs, i.e. cross graph convolution and grap...

متن کامل

Multi-task, multi-label and multi-domain learning with residual convolutional networks for emotion recognition

Automated emotion recognition in the wild from facial images remains a challenging problem. Although recent advances in Deep Learning have supposed a significant breakthrough in this topic, strong changes in pose, orientation and point of view severely harm current approaches. In addition, the acquisition of labeled datasets is costly, and current state-of-the-art deep learning algorithms canno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Big Data

سال: 2022

ISSN: ['2372-2096', '2332-7790']

DOI: https://doi.org/10.1109/tbdata.2020.3019478